首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1762篇
  免费   278篇
  国内免费   222篇
化学   2030篇
晶体学   14篇
力学   13篇
综合类   5篇
数学   5篇
物理学   195篇
  2024年   2篇
  2023年   22篇
  2022年   59篇
  2021年   62篇
  2020年   101篇
  2019年   105篇
  2018年   75篇
  2017年   87篇
  2016年   113篇
  2015年   98篇
  2014年   110篇
  2013年   213篇
  2012年   106篇
  2011年   80篇
  2010年   43篇
  2009年   74篇
  2008年   76篇
  2007年   103篇
  2006年   109篇
  2005年   72篇
  2004年   79篇
  2003年   84篇
  2002年   46篇
  2001年   51篇
  2000年   36篇
  1999年   26篇
  1998年   20篇
  1997年   40篇
  1996年   29篇
  1995年   32篇
  1994年   21篇
  1993年   17篇
  1992年   15篇
  1991年   10篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有2262条查询结果,搜索用时 31 毫秒
1.
Pentafluorosulfanyl (SF5)-containing compounds and corresponding analogs are a highly valuable class of fluorine-containing building blocks owing to their unique properties. The reason for that is the set of peculiar and tremendously beneficial characteristics they can impart on molecules once introduced onto them. Despite this, their application in distinct scientific fields remains modest, given the extremely harsh reaction conditions needed to access such compounds. The recent synthetic approaches via S−F, and C−SF5 bond formation as well as the use of SF5-containing building blocks embody a “stairway-to-heaven” loophole in the synthesis of otherwise-inaccessible chemical scaffolds only a few years ago. Herein, we report and evaluate the properties of the SF5 group and analogs, by summarizing synthetic methodologies available to access them as well as following applications in material science and medicinal chemistry since 2015.  相似文献   
2.
In this concept review, the fundamental and polymerization chemistry of inverse vulcanization for the preparation of statistical and segmented sulfur copolymers, which have been actively developed and advanced in various applications over the past decade is discussed. This concept review delves into a discussion of step-growth polymerization constructs to describe the inverse vulcanization process and discuss prepolymer approaches for the synthesis of segmented sulfur polyurethanes. Furthermore, this concept review discusses the advantages of inverse vulcanization in conjunction with dynamic covalent polymerization and post-polymerization modifications to prepare segmented block copolymers with enhanced thermomechanical and flame retardant properties of these materials.  相似文献   
3.
Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g−1, with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.  相似文献   
4.
何蔓  陈贝贝  胡斌 《化学教育》2022,43(18):11-15
充分利用线上教学的优势,对化学院本科生开设了“联用技术及元素形态”国际课程,避免了传统教学中组织、协调外籍/外地专家资源过程中必要的各种消耗,极大程度地整合教学资源、改善教学效果。在该课程的探索与实践过程中,学生们对痕量元素形态及基于等离子体质谱的各种联用技术产生了极大的兴趣,激发了他们的主动学习热情;教师之间及师生之间的沟通趋向更简单、更灵活、更实时,为后续线上线下混合式国际课程建设提供了良好的基础和借鉴。  相似文献   
5.
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.  相似文献   
6.
Polysulfide intermediates (PSs), the liquid-phase species of active materials in lithium–sulfur (Li-S) batteries, connect the electrochemical reactions between insulative solid sulfur and lithium sulfide and are key to full exertion of the high-energy-density Li-S system. Herein, the concept of sulfur container additives is proposed for the direct modification on the PSs species. By reversible storage and release of the sulfur species, the container molecule converts small PSs into large organosulfur species. The prototype di(tri)sulfide-polyethylene glycol sulfur container is highly efficient in the reversible PS transformation to multiply affect electrochemical behaviors of sulfur cathodes in terms of liquid-species clustering, reaction kinetics, and solid deposition. The stability and capacity of Li-S cells was thereby enhanced. The sulfur container is a strategy to directly modify PSs, enlightening the precise regulation on Li-S batteries and multi-phase electrochemical systems.  相似文献   
7.
8.
Sulfonic acid based mesostructures (SAMs) have been developed in recent years and have important catalytic applications. The primary applications of these materials are in various organic synthesis reactions, such as multicomponent reactions, carbon–carbon bond couplings, protection reactions, and Fries and Beckman rearrangements. This review aims to provide an overview of the recent developments in the field of SAMs with a particular emphasis on the reaction scope and advantages of heterogeneous solid acid catalysts.  相似文献   
9.
A new approach has been developed to improve SO2 sorption by cyano‐containing ionic liquids (ILs) through tuning the basicity of ILs and cyano–sulfur interaction. Several kinds of cyano‐containing ILs with different basicity were designed, prepared, and used for SO2 capture. The interaction between these cyano‐containing ILs and SO2 was investigated by FTIR and NMR methods. Spectroscopic investigations and quantum chemical calculations showed that dramatic effects on SO2 capacity originate from the basicity of the ILs and enhanced cyano–sulfur interaction. Furthermore, the captured SO2 was easy to release by heating or bubbling N2 through the ILs. This efficient and reversible process, achieved by tuning the basicity of ILs, is an excellent alternative to current technologies for SO2 capture.  相似文献   
10.
General synthetic access to expanded π‐acidic surfaces of variable size, topology, chirality, and π acidity is reported. The availability of π surfaces with these characteristics is essential to develop the functional relevance of anion–π interactions with regard to molecular recognition, translocation, and transformation. The problem is that, with expanded π surfaces, the impact of electron‐withdrawing substituents decreases and the high π acidity needed for strong anion–π interactions can be more difficult to obtain. To overcome this problem, it is herein proposed to build large surfaces from smaller fragments and connect these fragments with bridges that are composed only of single atoms. Two central surfaces for powerful anion–π interactions, namely, perfluoroarenes and naphthalenediimides (NDIs), were selected as fragments and coupled with through sulfide bridges. Their oxidation to sulfoxides and sulfones, as well as fluorine substitution in the peripheral rings, provides access to the full chemical space of relevant π acidities. According to cyclic voltammetry, LUMO levels range from ?3.96 to ?4.72 eV. With sulfoxide bridges, stereogenic centers are introduced to further enrich the intrinsic planar chirality of the expanded surfaces. The stereoisomers were separated by chiral HPLC and characterized by X‐ray crystallography. Their topologies range from chairs to π boats, and the latter are reminiscent of the cation–π boxes in operational neuronal receptors. With pentafluorophenyl acceptors, the π acidity of NDIs with two sulfoxide groups in the core reaches ?4.45 eV, whereas two sulfone moieties give a value of ?4.72 eV, which is as low as with four ethyl sulfone groups, that is, a π superacid near the limit of existence. Beyond anion–π interactions, these conceptually innovative π‐acidic surfaces are also of interest as electron transporters in conductive materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号